Migliari, M., Chesne, L., Despax, J., Babut, R., De Gaulmyn, C., Morille, B., Mercier, G., Boutté, F., Perrault, S., 2023. MESH 2C : Morphology Environment Sustainability Human comfort - City Climate. Rapport Final 2020-2023.
Un projet de l’APR ADEME Modéval’ Urba 2019
RÉSUMÉ
Le projet de recherche MESH 2C (acronyme de « Morphology Environment Sustainability Human comfort - City Climate ») s'inscrit dans le cadre de l'adaptation des villes au changement climatique, avec pour objectif de comprendre l'impact des formes urbaines, des matériaux, de la végétation et de la ventilation sur les configurations urbaines afin de réduire les îlots de chaleur urbains et d'optimiser le confort thermique des espaces extérieurs.
Ce projet part du constat que les outils d'analyse microclimatique actuels sont excessivement chronophages et ne peuvent donc pas être utilisés efficacement lors des phases d’esquisse de la planification urbaine, qui ont pourtant un impact majeur sur le résultat final. En effet, ces phases déterminent les orientations pour le développement des nouvelles zones urbaines.
Suite aux recherches scientifiques menées dans le cadre du projet MESH 2C, qui ont révélé que les arbres et l'ombrage qu'ils fournissent sont les éléments les plus efficaces pour résoudre simultanément les problèmes d'îlots de chaleur urbains et de confort thermique des espaces extérieurs, un algorithme de morphogénèse d'espaces arborés a été développé. Cet algorithme permet de choisir des emplacements appropriés pour chaque espèce végétale en fonction de ses besoins spécifiques et de ses apports au microclimat local.
La synergie entre MESH 2C et MESH (étape précédente du projet, axée sur les formes urbaines) dans constitue l’un des outils de conception des morphologies urbaines les plus complets, permettant d'explorer nombreuses possibilités et d'optimiser leur performance environnementale selon une approche holistique et multicritère. L'évaluation et l'optimisation des variantes morphologiques des agencements d'arbres, de bâtiments et de revêtements de sol en termes d'irradiation de l'espace public et de températures de surface permettent d'identifier la configuration urbaine qui offre la meilleure sensation thermique aux citoyens, tout en réduisant efficacement les températures de l'air, en tenant compte des contraintes et des délais des premières phases des projets opérationnels.
Des développements ultérieurs, visant à caractériser les propriétés et les apports des matériaux et des végétaux sur le microclimat, à explorer la génération de morphologies dynamiques par l’intelligence artificielle, et à améliorer les méthodes actuellement disponibles pour l’évaluation du confort thermique en fonction des durées d’exposition, seront nécessaires pour aborder de manière pertinente la conception des espaces urbains face aux défis d'aujourd'hui et de demain.
ABSTRACT
The research project MESH 2C (acronym for "Morphology Environment Sustainability Human comfort - City Climate") is part of the effort to adapt cities to climate change, with the objective of understanding the impact of urban forms, materials, vegetation, and ventilation on urban configurations in order to reduce urban heat islands and optimize the thermal comfort of outdoor spaces.
This project acknowledges that current microclimate analysis tools are excessively time-consuming and cannot be effectively used during the early stages of urban planning, which have a significant impact on the final outcome. These stages determine the guidelines for the development of new urban areas.
Following the scientific research conducted as part of the MESH 2C project, which revealed that trees and the shade they provide are the most effective elements for simultaneously addressing urban heat island issues and thermal comfort in outdoor spaces, an algorithm for generating tree-filled spaces has been developed. This algorithm allows for the selection of suitable locations for each plant species based on their specific needs and contributions to the local microclimate.
The synergy between MESH 2C and MESH (the previous stage of the project, focused on urban forms) constitutes one of the most comprehensive tools for designing urban morphologies, enabling the exploration of numerous possibilities and the optimization of their environmental performance through a holistic and multi-criteria approach. Evaluating and optimizing morphological variations in the arrangement of trees, buildings, and ground cover in terms of public space irradiation and surface temperatures helps identify the urban configuration that provides the best thermal sensation for citizens while effectively reducing air temperatures, considering the constraints and deadlines of initial operational project phases.
Further developments, aiming to characterize the properties and effects of materials and vegetation on microclimate, explore the generation of dynamic morphologies through artificial intelligence, and improve the currently available methods for evaluating thermal comfort considering exposure durations, will be necessary to approach the design of urban spaces in a relevant manner, considering the challenges of today and tomorrow.
Sigles et acronymes
ADEME | Agence de l’Environnement et de la Maîtrise de l’Énergie | |
ASV | Actual Sensation Vote | |
AT | Apparent Temperature Index | |
ATshade | Apparent Temperature Shade | |
BRM | Basal Metabolic Rate | |
CE | Cooling Effect | |
CFD | Computational Fluid Dynamics | |
CNNs | Convolutional Neural Networks | |
COMFA | Comfort Formula | |
CWCI | Canada’s Wind Chill Index | |
DI | Thom Discomfort Index | |
ET | Effective Temperature | |
FVC | Facteur de Vue sur le Ciel | |
HI | Heat Index | |
HR | Humidité relative | |
ICU | Îlot de chaleur urbain | |
MESH | Morphology, Environment, Sustainability and Human comfort | |
MESH 2C | Morphology, Environment, Sustainability and Human comfort – City Climate | |
mPET | Modified Physiologically Equivalent Temperature | |
MR | Metabolic Rate | |
NET | Net Effective Temperature | |
Out_SET* | Outdoor Standard Effective Temperature | |
Physiological Equivalent Temperature | ||
PHS | Predicted Heat Strain | |
PMV | Predicted Mean Vote | |
PPD | Predicted Percentage of Dissatisfied | |
PT** | New Perceived Temperature | |
RMR | Resting Metabolic Rate | |
SET* | Standard Effective Temperature | |
STD | Simulation Thermique Dynamique | |
STEVE | Screening Tool for Estate Environment Evaluation | |
SVF | Sky View Factor | |
Tair | Température de l’air | |
Tmrt | Température moyenne radiante | |
Tsol | Température surfacique du sol | |
THI | Temperature Humidity Index | |
TS | Thermal Sensation Index | |
TSV | Thermal Sensation Vote | |
UTCI | Universal Thermal Climate Index | |
v | Vitesse du vent | |
VE | Véhicule électrique | |
WBGT | Wet Bulb Globe Temperature |
Références bibliographiques
ADEME. 2017. Rafraîchissement des villes : de quelles connaissances avons-nous besoin ? Actes de la journée scientifique et technique du 27 juin 2017 à Lyon:1–42.
AL HORR, Y., ARIF, M., KATAFYGIOTOU, M., MAZROEI, A., KAUSHIK, A. & ELSARRAG, E. 2016. Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature. International Journal of Sustainable Built Environment 5:1–11. The Gulf Organisation for Research and Development.
ALBDOUR, M. S. & BARANYAI, B. 2019. An overview of microclimate tools for predicting the thermal comfort, meteorological parameters and design strategies in outdoor spaces. Pollack Periodica 14:109–118.
ALDAWI, F., DATE, A., ALAM, F., KHAN, I. & ALGHAMDI, M. 2013. Energy efficient residential house wall system. Applied Thermal Engineering 58:400–410. Elsevier Ltd.
ALLEN, J. A. 1877. The Influence of Physical Conditions in the Genesis of Species.
ÁLVAREZ, S. 1992. Control climático en espacios abiertos: el proyecto Expo’92. (Secretaría General Técnica del CIEMAT, Ed.). Seville. 1–195.
ANGELOTTI, A., DESSÌ, V. & SCUDO, G. 2007. The evaluation of thermal comfort conditions in simplified urban spaces: the COMFA + model. 65–69 2nd PALENC Conference and 28th AIVC Conference on Building Low Energy Cooling and Advanced Ventilation Technologies in the 21st Century. Crete island, Greece.
AROZTEGUI, J. M. 1995. Cuantificacion del impacto de las sombras de los edificios. Encontro Nacional Sobre Conforto no Ambiente Construìdo (ENCAC) 3.
ASHRAE. 2020. ANSI/ASHRAE Standard 55 - Thermal Environmental Conditions for Human Occupancy. ASHRAE.
ATHAMENA, K. 2012. Modélisation et simulation des microclimats urbains : Étude de l’impact de la morphologie urbaine sur le confort dans les espaces extérieurs. Cas des éco-quartiers. Ecole Centrale de Nantes.
ATHAMENA, K., SINI, J. F., ROSANT, J. M. & GUILHOT, J. 2018. Numerical coupling model to compute the microclimate parameters inside a street canyon: Part I: Methodology and experimental validation of surface temperature. Solar Energy 174:1237–1251. Elsevier.
ATHAMENA, K., SINI, J. F., ROSANT, J. M. & GUILHOT, J. 2018. Numerical coupling model to compute the microclimate parameters inside a street canyon: Part II: Experimental validation of air temperature and airflow. Solar Energy 170:470–485. Elsevier.
AYDIN, E. E., JAKUBIEC, J. A. & JUSUF, S. K. 2019. A comparison study of simulation-based prediction tools for air temperature and outdoor thermal comfort in a tropical climate. Proceedings of Building Simulation 2019: 16th Conference of IBPSA 16:4118–4125.
AYYAD, Y. N. & SHARPLES, S. 2019. Envi-MET validation and sensitivity analysis using field measurements in a hot arid climate. IOP Conference Series: Earth and Environmental Science 329.
AZAM, M. H., BERNARD, J., MORILLE, B., MUSY, M. & ANDRIEU, H. 2018. A pavement-watering thermal model for SOLENE-microclimat: Development and evaluation. Urban Climate 25:22–36. Elsevier.
AZAM, M. H., MORILLE, B., BERNARD, J., MUSY, M. & RODRIGUEZ, F. 2018. A new urban soil model for SOLENE-microclimat: Review, sensitivity analysis and validation on a car park. Urban Climate 24:728–746. Elsevier.
BALARAS, C., TSELEPIDAKI, I., SANTAMOURIS, M. & ASIMAKOPOULOS, D. 1993. Calculations and statistical analysis of the environmental cooling power index for Athens, Greece. Energy Conversion and Management 34:139–146.
BASTIN, J. F., CLARK, E., ELLIOTT, T., HART, S., VAN DEN HOOGEN, J., HORDIJK, I., MA, H., MAJUMDER, S., MANOLI, G., MASCHLER, J., MO, L., ROUTH, D., YU, K., ZOHNER, C. M. & CROWTHER, T. W. 2019. Understanding climate change from a global analysis of city analogues. PLoS ONE 14:1–13.
BECHTEL, B. 2015. A new global climatology of annual land surface temperature. Remote Sensing 7:2850–2870.
BECHTEL, B., DEMUZERE, M., MILLS, G., ZHAN, W., SISMANIDIS, P., SMALL, C. & VOOGT, J. 2019. SUHI analysis using Local Climate Zones - A comparison of 50 cities. Urban Climate 28:100451. Elsevier.
BEDFORD, T. 1936. The Warmth Factor in Comfort at Work. A Physiological Study of Heating and Ventilation. H. M. Stationery Office. London: H.M.S.O.
BEDFORD, T. 1951. Equivalent temperature, what it is, how it’s measured. Heating, Piping and Air Conditioning 23:87–91.
BELDING, H. S. & HATCH, T. F. 1955. Index for evaluating Heat Stress in Terms of resulting Physiological Strains. Heating, Piping and Air Conditioning 27:129–36.
BERGMANN, C. 1847. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien.
BLAZEJCZYK, K. 1994. New climatological and physiological model of the human heat balance outdoor (MENEX) and its applications in bioclimatological studies in different scales. Zeszyty PAN IGiPZ 28:27–58.
BLAZEJCZYK, K. 2005. MENEX_2005. The Updated Version of Man-Environment Heat Exchange Model.
BLAZEJCZYK, K., EPSTEIN, Y., JENDRITZKY, G., STAIGER, H. & TINZ, B. 2012. Comparison of UTCI to selected thermal indices. International Journal of Biometeorology 56:515–535.
BLUESTEIN, M. & OSCZEVSKI, B. Y. R. 2002. Wind chill and the development of frostbite in the face. 168–171 in American Meteorological Society (ed.). 15th Conference on Biometeorology and Aerobiology. Kansas.
BOSIA, D. 2014. The Structure of Architecture – Role of the « New » Computational Designer. Advances in Architectural Geometry. London.
BOUYER, J. 2009. Modélisation et simulation des microclimats urbains - Étude de l’impact de l’aménagement urbain sur les consommations énergétiques des bâtiments:1–306.
BRÖDE, P., FIALA, D., BŁAŻEJCZYK, K., HOLMÉR, I., JENDRITZKY, G., KAMPMANN, B., TINZ, B. & HAVENITH, G. 2012. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology 56:481–494.
BROWN, R. D. & GILLESPIE, T. J. 1986. Estimating outdoor thermal comfort using a cylindrical radiation thermometer and an energy budget model. International Journal of Biometeorology 30:43–52.
BSI STANDARDS PUBLICATION. 2019. BS ISO 37123 : Sustainable cities and communities - Indicators for resilient cities. British Standard.
CASTRO, S. S., GUAITA, C. S., EGIDO, M. N. S., ZARZALEJO, L. F., MIRANDA, R. E. & DEL ROSARIO HERAS CELEMÍN, M. 2012. Comfort evaluation in an urban boulevard by means of evaporative wind towers. Energy Procedia 30:1226–1232.
ÇENGEL, Y. A. & BOLES, M. A. 2015. Thermodynamics: An Engineering Approach. Mc Graw Hill Education. 1–1023.
CHEN, D. & CHEN, H. W. 2013. Using the Köppen classification to quantify climate variation and change: An example for 1901-2010. Environmental Development 6:69–79.
CHEN, Y. C., LIN, T. P. & MATZARAKIS, A. 2014. Comparison of mean radiant temperature from field experiment and modelling: a case study in Freiburg, Germany. Theoretical and Applied Climatology 118:535–551.
CHEN, Y.-C. & MATZARAKIS, A. 2014. Modification of physiologically equivalent temperature. Journal of Heat Island Institute International 9:26–32.
CHO, W. J., KWON, S. & CHOI, J. W. 2009. The thermal conductivity for granite with various water contents. Engineering Geology 107:167–171.
COHEN, P., POTCHTER, O. & MATZARAKIS, A. 2013. Human thermal perception of Coastal Mediterranean outdoor urban environments. Applied Geography 37:1–10. Elsevier.
CZAJKOWSKI, Ł., OLEK, W. & WERES, J. 2020. Effects of heat treatment on thermal properties of European beech wood. European Journal of Wood and Wood Products 78:425–431. Springer Berlin Heidelberg.
DE FREITAS, C. R. & GRIGORIEVA, E. A. 2015. A comprehensive catalogue and classification of human thermal climate indices. International Journal of Biometeorology 59:109–120.
DE FREITAS, C. R. & GRIGORIEVA, E. A. 2017. A comparison and appraisal of a comprehensive range of human thermal climate indices. International Journal of Biometeorology 61:487–512. International Journal of Biometeorology.
DOCTER, P. & DEL CARMEN, R. 2015. Inside Out. Disney-Pixar.
DUFTON, A. F. 1932. The equivalent temperature of a room and its measurement. (H. M. Stationery Office, Ed.).
DUFTON, A. F. 1933. The Use of Kata-Thermometers for the Measurement of Equivalent Temperature. Journal of Hygiene 33:349–352.
DUKES-DOBOS, F. & HENSCHEL, A. 1971. The modification of the WBGT index for establishing permissible heat exposure limits in occupational work.
Emotion and metabolism. 1937. Acta Psychiatrica Scandinavica 12:29–39.
EPSTEIN, Y. & MORAN, D. S. 2006. Thermal Comfort and the Heat Stress Indices. Industrial Health 44:388–398.
FANG, X., SHEN, L. & MENG, Q. 2015. The Study on Microclimate Simulation of Country Park Based on ENVI-met Software -Take the East Gate Entrance Area of Guangdong Tianlu Lake Country Park for Example:38–47.
FANGER, P. O. 1972. Thermal Comfort: Analysis and applications in environmental engineering. Applied Ergonomics 3:181.
FENNER, D., MEIER, F., BECHTEL, B., OTTO, M. & SCHERER, D. 2017. Intra and inter ‘local climate zone’ variability of air temperature as observed by crowdsourced citizen weather stations in Berlin, Germany. Meteorologische Zeitschrift 26:525–547.
FIALA, D. 1998. Dynamic Simulation of Human Heat Transfer and Thermal Comfort. De Montfort University, Leicester, UK.
FOQUET, C. 2018. En 2050, plus de deux tiers de l’humanité vivra en ville.
FOSTER, F. & COLLARD, M. 2013. A Reassessment of Bergmann’s Rule in Modern Humans. PLoS ONE 8.
FRANCK BOUTTÉ CONSULTANTS, LAB’URBA, @IMMAGINOTECA & SADEV94. 2018. MESH - Conception, évaluation et optimisation des formes urbaines au prisme de la qualité environnementale. ADEME:579.
FROEHLE, A. W. 2008. Climate variables as predictors of basal metabolic rate: New equations. American Journal of Human Biology 20:510–529.
GAGGE, A. P., FOBELETS, A. P. AND BERGLUND, L. G. 1986. A standard predictive Index of human reponse to thermal enviroment. American Society of Heating, Refrigerating and Air-Conditioning Engineers:709–731.
GAGGE, A. P., STOLWIJK, J. A. J. & HARDY, J. D. 1967. Comfort and thermal sensations and associated physiological responses at various ambient temperatures. Environmental Research 1:1–20.
GAGGE, A. P., STOLWIJK, J. A. J. & NISHI, Y. 1971. An effective temperature scale on a simple model of human physiological regulatory response. ASHRAE Transactions 77:247–262.
GELETIČ, J., LEHNERT, M., & DOBROVOLNÝ, P. 2016. Modelled spatio-temporal variability of air temperature in an urban climate and its validation: A case study of Brno, Czech Republic. Hungarian Geographical Bulletin, 65(2), 169–180. https://doi.org/10.15201/hungeobull.65.2.7
GIVONI, B. & NOGUCHI, M. 2000. Issues and problems in outdoor comfort research. 562–565 in Cambridge Proceedings (ed.). Proceedings of the International Conference on Passive and Low Energy Architecture. Cambridge, UK.
GIVONI, B. 1969. Man, Climate and Architecture. (John Wiley & Sons, Ed.). New York. 483.
GIVONI, B., NOGUCHI, M., SAARONI, H., POTCHTER, O., YAACOV, Y., FELLER, N. & BECKER, S. 2003. Outdoor comfort research issues. Energy and building 35:77–86.
GOLASI, I., SALATA, F., DE LIETO VOLLARO, E. & COPPI, M. 2018. Complying with the demand of standardization in outdoor thermal comfort: a first approach to the Global Outdoor Comfort Index (GOCI). Building and Environment 130:104–119. Elsevier.
GROEN, G. 2009. Wind chill equivalent temperature (WCET) - Climatology and scenarios for Schiphol Airport.
GROS, A. 2013. Modélisation de la demande énergétique des bâtiments à l ’ échelle d ’ un quartier.
GROS, A. 2015. Séminaires Journée SOLENE 2015.
GUL, M., KOTAK, Y., MUNEER, T. & IVANOVA, S. 2018. Enhancement of albedo for solar energy gain with particular emphasis on overcast skies. Energies 11:1–17.
HÉNON, A., MESTAYER, P. G., GROLEAU, D. & VOOGT, J. 2011. High resolution thermo-radiative modeling of an urban fragment in Marseilles city center during the UBL-ESCOMPTE campaign. Building and Environment 46:1747–1764. Elsevier.
HÉNON, A., MESTAYER, P. G., LAGOUARDE, J. P. & VOOGT, J. A. 2012. An urban neighborhood temperature and energy study from the CAPITOUL experiment with the SOLENE model: Part 1: Analysis of flux contributions. Theoretical and Applied Climatology 110:177–196.
HÉNON, A., MESTAYER, P. G., LAGOUARDE, J. P. & VOOGT, J. A. 2012. An urban neighborhood temperature and energy study from the CAPITOUL experiment with the Solene model: Part 2: Influence of building surface heterogeneities. Theoretical and Applied Climatology 110:197–208.
HIEN, W. N., IGNATIUS, M., ELIZA, A., JUSUF, S. K. & SAMSUDIN, R. 2012. Comparison of steve and ENVI-met as temperature prediction models for Singapore context. International Journal of Sustainable Building Technology and Urban Development 3:197–209.
HIRASHIMA, S. Q. DA S., KATZSCHNER, A., FERREIRA, D. G., ASSIS, E. S. DE & KATZSCHNER, L. 2015. Thermal comfort comparison and evaluation in different climates. Urban Climate 23:219–230.
HOPPE, P. 1999. The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. International journal of biometeorology 43:71–75.
HOUGHTEN, F. C. & YAGLOU, C. P. 1923. Determining lines of equal comfort lines. ASHVE Transactions 29:165–176.
HUMPHREYS, M. A. 1976. Field studies of thermal comfort compared and applied. Building Services Engineer 44:5–27.
HUMPHREYS, M. A. 1996. Thermal comfort temperatures world-wide - The current position. WREC 1996:139–144.
IBRAHIM, A., ALI, H., ZGHOUL, A. & JARADAT, S. 2019. Mood state and human evaluation of the thermal environment using virtual settings. Indoor and Built Environment 0:1–17.
IONIDES, M., PLUMMER, J. & SIPLE, P. A. 1945. The thermal acceptance ratio. Report from climatology and environmental protection section. United States: Office of the US Quartermaster General.
IRMAK, M. A., YILMAZ, S., & DURSUN, D. 2017. Effect of different pavements on human thermal comfort conditions. Atmosfera, 30(4), 355–366. https://doi.org/10.20937/ATM.2017.30.04.06
JENDRITZKY, G. 2003. Perceived temperature: “Klima-Michel-model“. The Development of Heat Stress Watch Warning Systems for European Cities.
JENDRITZKY, G., DE DEAR, R. & HAVENITH, G. 2012. UTCI - Why another thermal index? International Journal of Biometeorology 56:421–428.
JENDRITZKY, G., HAVENITH, G., WEIHS, P. & BATCHVAROVA, E. 2009. Towards a Universal Thermal Climate Index UTCI for Assessing the Thermal Environment of the Human Being. Final Report COST Action 730:1–26.
JENDRITZKY, G., SÖNNING, W. & SWANTES, J. 1979. Klimatologische Probleme - ein einfaches Verfahren zur Vorhersage der Wärmebelastung. Zeitschrift für angewandte Bäder und Klimaheilkunde.
JENDRITZKY, G., STAIGER, H., BUCHER, K., GRAETZ, A. & LASCHEWSKI, G. 2000. The Perceived Temperature: The Method of the Deutscher Wetterdienst for the Assessment of Cold Stress and Heat Load for the Human Body. International journal of biometeorology 56:165–76.
KAWAMURA, T. 1965. Distribution of discomfort index in Japan in summer season. Journal of Meteorological Research 17:460–466.
KIM, M., CHONG, S. C., CHUN, C. & CHOI, Y. 2017. Effect of thermal sensation on emotional responses as measured through brain waves. Building and Environment 118:32–39. Elsevier.
KOLETSIS, I., TSELIOU, A., LYKOUDIS, S., PANTAVOU, K. & TSIROS, I. X. 2019. Testing and validation of ENVI-met simulation based on in-situ micrometeorological measurements : the case of Syntagma. 16th International Conference on Environmental Science and Technology.
KWOK, Y. T., et al. 2019. How well does the Local Climate Zone Scheme discern the thermal environment of Toulouse (France)? An analysis using numerical simulation data. International Journal of Climatology, 39(14), 5292–5315. doi:10.1002/joc.6140.
LAI, D., GUO, D., HOU, Y., LIN, C. & CHEN, Q. 2014. Studies of outdoor thermal comfort in northern China. Building and Environment 77:110–118. Elsevier.
LAM, C. K. C., LOUGHNAN, M. & TAPPER, N. 2018. Visitors’ perception of thermal comfort during extreme heat events at the Royal Botanic Garden Melbourne. International Journal of Biometeorology 62:97–112. International Journal of Biometeorology.
LAU, K. K. L., CHUNG, S. C. & REN, C. 2019. Outdoor thermal comfort in different urban settings of sub-tropical high-density cities: An approach of adopting local climate zone (LCZ) classification. Building and Environment 154:227–238. Elsevier.
LECONTE, F. 2014. Caractérisation des îlots de chaleur urbain par zonage climatique et mesures mobiles : Cas de Nancy. (Doctoral dissertation). https://tel.archives-ouvertes.fr/tel-01141361/
LECONTE, F. 2014. Caractérisation des îlots de chaleur urbain par zonage climatique et mesures mobiles : Cas de Nancy.:241.
LECONTE, F., BOUYER, J., CLAVERIE, R. & PÉTRISSANS, M. 2015. Using Local Climate Zone scheme for UHI assessment: Evaluation of the method using mobile measurements. Building and Environment 83:39–49.
LEE, D. H. K. 1958. Proprioclimates of man and domestic animals. Climatology: Reviews of Research.
LI, H. 2016. Impacts of Pavement Strategies on Human Thermal Comfort. Pavement Materials for Heat Island Mitigation:281–306.
LI, J. & LIU, N. 2020. The perception, optimization strategies and prospects of outdoor thermal comfort in China: A review. Building and Environment 170:106614. Elsevier.
LI, J., NIU, J., HUANG, T. & MAK, C. M. 2022. Dynamic effects of frequent step changes in outdoor microclimate environments on thermal sensation and dissatisfaction of pedestrian during summer. Sustainable Cities and Society 79:1–17. Elsevier Ltd.
LIN, T. P., YANG, S. R., CHEN, Y. C. & MATZARAKIS, A. 2019. The potential of a modified physiologically equivalent temperature (mPET) based on local thermal comfort perception in hot and humid regions. Theoretical and Applied Climatology 135:873–876.
LIU, M. 2019. Body fat rate and human thermal comfort relativity study with BIA in HVAC condition. IOP Conference Series: Materials Science and Engineering 609.
LIU, Z., ZHENG, S. & ZHAO, L. 2018. Evaluation of the ENVI-met vegetation model of four common tree species in a subtropical hot-humid area. Atmosphere 9.
LUCCHESE, J. R., MIKURI, L. P., FREITAS, N. V. S. DE & ANDREASI, W. A. 2016. Application of selected indices on outdoor thermal comfort. International Journal of Energy and Environment 7:291–302.
MADHURANGA, D. & PERERA, N. 2019. Urban Heat Island Minimisation, Local Climate Zones and Parametric Optimisation : A “Grasshopper” Based Model. 5th International Conference on Counter Measures to Urban Heat Islands.
MALYS, L. 2012. Évaluation de l’impact de dispositifs végétaux architecturaux sur la consommation énergétique des bâtiments.
MALYS, L., MUSY, M. & INARD, C. 2014. A hydrothermal model to assess the impact of green walls on urban microclimate and building energy consumption. Building and Environment 73:187–197. Elsevier.
MANOLI, G., FATICHI, S., SCHLÄPFER, M., YU, K., THOMAS, W., KATUL, G. G. & BOU-ZEID, E. 2019. Magnitude of urban heat islands largely explained by climate and population. Nature C. Springer US.
MASTERTON, J. M. & RICHARDSON, F. A. 1979. Humidex: A Method of Quantifying Human Discomfort Due to Excessive Heat and Humidity. Environment Canada:45.
MATZARAKIS, A. & INDICES, T. 2018. RayMan Pro.
MATZARAKIS, A. 2007. Climate, Thermal Comfort and Tourism. Climate Change and Tourism – Assessment and Coping Strategies:140–154.
MATZARAKIS, A., RUTZ, F. & MAYER, H. 2010. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. International Journal of Biometeorology 54:131–139.
MESTAYER, P., CHANCIBAULT, K., LEBOUC, L., LETELLIER, L., MOSINI, M. L., RODRIGUEZ, F., ROUAUD, J. M., BAGGA, I., CALMET, I., FONTANILLES, G., GAUDIN, D., LEE, J. H., PIQUET, T., ROSANT, J. M., SABRE, M., TÉTARD, Y., BRUT, A., SELVES, J. L., SOLIGNAC, P. A., DAYAU, S., IRVINE, M., LAGOUARDE, J. P., KASSOUK, Z., LAUNEAU, P., CONNAN, O., DEFENOUILLÈRE, P., GORIAUX, M., HÉBERT, D., LETELLIER, B., MARO, D., NAJJAR, G., NERRY, F., QUENTIN, C., BIRON, R., COHARD, J. M., GALVEZ, J. & KLEIN, P. 2011. Flux SAP 2010 experimental campaign over an heterogeneous Urban zone, part 1: Heat and vapour flux assessment. HARMO 2011 - Proceedings of the 14th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes:433–437.
MÉTÉO-FRANCE. 2019. Canicules 2019 : la moitié de la France n’avait jamais eu aussi chaud !
MIGLIARI, M. 2019. La Maison LVMH: un centro per l'arte, il talento e il patrimonio. Riqualificazione del Musée National des Arts et Traditions Populaires di Parigi. Politecnico di Milano.
MIGLIARI, M., BABUT, R., DE GAULMYN, C., CHESNE, L. & BAVEREL, O. 2022. The Metamatrix of Thermal Comfort: a compendious graphical methodology for appropriate selection of outdoor thermal comfort indices and thermo-physiological models for human-biometeorology research and urban planning. Sustainable Cities and Society 81:1–23.
MIGLIARI, M., BABUT, R., DE GAULMYN, C., CHESNE, L., & BAVEREL, O. 2022b. The Metamatrix of Thermal Comfort: a compendious graphical methodology for appropriate selection of outdoor thermal comfort indices and thermo-physiological models for human-biometeorology research and urban planning. Sustainable Cities and Society, 81(103852), 1–23. https://doi.org/10.1016/j.scs.2022.103852
MIGLIARI, M., BABUT, R., GAULMYN, C. D. E., CHESNE, L., & BAVEREL, O. 2022a. The operational metamatrix of thermal comfort for European areas, a graphical methodology for appropriate selection of outdoor thermal comfort indices: application to an urban planning study-case. AIC Toulouse 2022, 1–6.
MIGLIARI, M., DESPAX, J., DOGBO, A., CHESNE, L., & BAVEREL, O. 2023a. Caractérisation du comportement microclimatique et biométéorologique des complexes multicouches de sols pour différents matériaux de surface. CGFC 2023, 1–15.
Migliari et al., 2023 MIGLIARI, M., PERRAULT, S., DESPAX, J., DOGBO, A.-M., CHESNE, L., & BAVEREL, O. 2023b. A tree morphogenesis algorithm to identify performant planting patterns for urban environments’ adaptation to climate change. ICUC11 - 11th International Conference on Urban Climate.
MIGUET, F. 2000. Paramètres physiques des ambiances architecturales : Un modèle numérique pour la simulation de la lumière naturelle dans le projet urbain:364.
MILLIEZ, M. & CARISSIMO, B. 2007. Numerical simulations of pollutant dispersion in an idealized urban area, for different meteorological conditions. Boundary-Layer Meteorology 122:321–342.
MILLIEZ, M. & CARISSIMO, B. 2008. Computational fluid dynamical modelling of concentration fluctuations in an idealized urban area. Boundary-Layer Meteorology 127:241–259.
MILLIEZ, M. 2006. Micrometeorological modelling in urban areas : polluant dispersion and radiative effects modelling. Ecole Nationale des Ponts et Chaussées.
MILOŠEVIĆ, D. D., SAVIĆ, S. M., MARKOVIĆ, V., ARSENOVIĆ, D., & ŠEĆEROV, I. 2016. Outdoor human thermal comfort in local climate zones of Novi Sad (Serbia) during heat wave period. Hungarian Geographical Bulletin, 65(2), 129–317. https://doi.org/10.15201/hungeobull.65.2.4
MILOŠEVIĆ, D., MIDDEL, A., SAVIĆ, S., DUNJIĆ, J., LAU, K. & STOJSAVLJEVIĆ, R. 2022. Mask wearing behavior in hot urban spaces of Novi Sad during the COVID-19 pandemic. Science of the Total Environment 815.
MILOŠEVIĆ, D., SAVIĆ, S., KRESOJA, M., LUŽANIN, Z., ŠEĆEROV, I., ARSENOVIĆ, D., DUNJIĆ, J. & MATZARAKIS, A. 2021. Analysis of air temperature dynamics in the “local climate zones” of Novi Sad (Serbia) based on long-term database from an urban meteorological network. International Journal of Biometeorology.
MINISTÈRE DE LA TRANSITION ÉCOLOGIQUE. 2021. Habiter la France de demain.
MISSÉNARD, A. 1935. Théorie simplifié du thermomètre resultant. Chauffage et Ventilation.
MOHD ZINAL, N. A., AMIR, A. & MANAP, N. 2019. Microclimate Model for Urban Heat Island Simulation: A Prediction Tool Extension to Calculate the Ambient Temperature of Building. MATEC Web of Conferences 266:1–6.
MONTEIRO, L. M. 2005. Review of Numerical Modelling of Outdoor Thermal Comfort. World Sustainable Building Conference 2005:2252–2259.
MORAKINYO, T. E., KONG, L., LAU, K. K. L., YUAN, C. & NG, E. 2017. A study on the impact of shadow-cast and tree species on in-canyon and neighborhood’s thermal comfort. Building and Environment 115:1–17. Elsevier.
MORILLE, B., MUSY, M. & MALYS, L. 2016. Preliminary study of the impact of urban greenery types on energy consumption of building at a district scale: Academic study on a canyon street in Nantes (France) weather conditions. Energy and Buildings 114:275–282. Elsevier B.V.
MUELLER, C. T. 2014. Computational Exploration of the Structural Design Space. Massachusetts Institute of Technology. 1–206.
MÜLLER, N., KUTTLER, W., & BARLAG, A. B. 2014. Counteracting urban climate change: Adaptation measures and their effect on thermal comfort. Theoretical and Applied Climatology, 115(1–2), 243–257. https://doi.org/10.1007/s00704-013-0890-4
MUSIL, J., KNIR, J. & VITSAS, A. 2019. Towards Sustainable Architecture : 3D Convolutional Neural Networks for Computational Fluid Dynamics Simulation and Reverse Design Workflow 3325:1–5.
MUSY, M., MAILLARD, P., AZAM, M., BAILLY, J., BAREL, E., BOZONNET, E., CALMET, I., GROS, A., MORILLE, B., MUSY, M., MAILLARD, P., AZAM, M., BAILLY, J. & BAREL, E. 2017. EVA (Eau, Végétation, Albédo) - Quantitative assessment of the impacts from three urban cooling solutions on microclimate, buildings’ energy demand and thermal comfort. Application to Lyon Part- Dieu district.
NASROLLAHI, N., HATAMI, Z. & TALEGHANI, M. 2017. Development of outdoor thermal comfort model for tourists in urban historical areas; A case study in Isfahan. Building and Environment 125:356–372.
NIKOLOPOULOU, M. 2011. Outdoor thermal comfort. Frontiers in Bioscience - Scholar 3 S:1552–1568.
NOVAK, M. 2013. Use of the UTCI in the Czech Republic. Geographia Polonica 86:21–28.
OHASHI, Y., GENCHI, Y., KONDO, H., KIKEGAWA, Y., YOSHIKADO, H. & HIRANO, Y. 2007. Influence of air-conditioning waste heat on air temperature in Tokyo during summer: Numerical experiments using an urban canopy model coupled with a building energy model. Journal of Applied Meteorology and Climatology 46:66–81.
OKE, T. R. 1973. City size and the urban heat island. Atmospheric Environment 7:769–779.
OKE, T. R. 2015. Urban heat islands. The Routledge Handbook of Urban Ecology.
OKE, T. R., MILLS, G., CHRISTEN, A. & VOOGT, J. A. 2017. Urban climates. Urban Climates. Cambridge University Press, Cambridge. 1–519.
OLGYAY, V. 1963. Design with Climate. Design with Climate. Princeton University Press.
PASCAL, M., GORIA, S., WAGNER, V., GUILLET, A., SABASTIA, M., CORDEAU, E., MAUCLAIR, C. & HOST, S. 2020. Influence de caractéristiques urbaines sur la relation entre température et mortalité en Île-de-France. Santé publique France. 62.
PELLICCIONI, A., ALTAVILLA, F. & BERARDI, S. 2000. SVILUPPO DI UN MODELLO PER LO STUDIO DEL FENOMENO DI PROPAGAZIONE DI ENERGIA TERMICA GENERATA DA EVENTI INCIDENTALI INTERESSANTI IMPIANTI INDUSTRIALI. Pp. 1–12 Valutazione e Gestione del Rischio negli Insediamenti Civili ed Industriali.
PICKUP, J. & DE DEAR, R. D. 2000. An Outdoor Thermal Comfort Index (Out-Set*). Part I - the model and its assumptions. 15th ICB & ICUC:1–7. World Meteorological Organization.
POTCHTER, O., COHEN, P., LIN, T. P. & MATZARAKIS, A. 2018. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Science of the Total Environment 631–632:390–406. Elsevier.
QUAYLE, R. G. & STEADMAN, R. G. 1998. The Steadman wind chill: An improvement over present scales. Weather and Forecasting 13:1187–1193.
RABASA, C. & DICKSON, S. L. 2016. Impact of stress on metabolism and energy balance. Current Opinion in Behavioral Sciences 9:71–77. Elsevier.
REITER, S. & DE HERDE, A. 2003. Qualitative and quantitative criteria for comfortable urban public spaces. Proceedings of the 2nd International Conference on Building Physics:1001–1009.
RICHARD, Y., EMERY, J., DUDEK, J., PERGAUD, J., CHATEAU-SMITH, C., ZITO, S., REGA, M., VAIRET, T., CASTEL, T., THÉVENIN, T. & POHL, B. 2018. How relevant are local climate zones and urban climate zones for urban climate research? Dijon (France) as a case study. Urban Climate 26:258–274. Elsevier.
ROBITU, M. 2005. Etude de l’interaction entre le bâtiment et son environnement urbain : influence sur les conditions de confort en espaces extérieurs. École Polytechnique de l’Université de Nantes.
ROSE, S. 2019. Bold Mars architecture heralds a new era for spatial exploration. Wallpaper.
RUEFENACHT, L. A. & ACERO, J. A. 2017. Strategies for Cooling Singapore. ETH Zurich. 1–185.
SALATA, F., GOLASI, I., DE LIETO VOLLARO, R. & DE LIETO VOLLARO, A. 2016. Outdoor thermal comfort in the Mediterranean area. A transversal study in Rome, Italy. Building and Environment 96:46–61. Elsevier.
SALATA, F., GOLASI, I., DE LIETO VOLLARO, R. & DE LIETO VOLLARO, A. 2016. Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data. Sustainable Cities and Society 26:318–343. Elsevier.
SANTAMOURIS, M., DING, L., FIORITO, F., OLDFIELD, P., OSMOND, P., PAOLINI, R., PRASAD, D. & SYNNEFA, A. 2017. Passive and active cooling for the outdoor built environment – Analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects. Solar Energy 154:14–33. Elsevier.
SAVASTANO, D. M., GORBACH, A. M., EDEN, H. S., BRADY, S. M., REYNOLDS, J. C. & YANOVSKI, J. A. 2009. Adiposity and human regional body temperature. American Journal of Clinical Nutrition 90:1124–1131.
SCHMITT, G., KNOLL, A., AYDT, H., LI, X., CHOW, W., NORFORD, L., EDWARDS, P. & ROTH, M. 2018. Tools for Cooling Singapore. Cooling Singapore.
SHAHMOHAMADI, P., CHE-ANI, A. I., MAULUD, K. N. A., TAWIL, N. M. & ABDULLAH, N. A. G. 2011. The Impact of Anthropogenic Heat on Formation of Urban Heat Island and Energy Consumption Balance. Urban Studies Research.
SHARMA, M. R. & ALI, S. 1986. Tropical summer index-a study of thermal comfort of Indian subjects. Building and Environment 21:11–24.
SHARP, T. A., BELL, M. L., GRUNWALD, G. K., SCHMITZ, K. H., SIDNEY, S., LEWIS, C. E., TOLAN, K. & HILL, J. O. 2002. Differences in resting metabolic rate between white and African-American young adults. Obesity Research 10:726–732.
SHOOSHTARIAN, S. 2019. Theoretical dimension of outdoor thermal comfort research. Sustainable Cities and Society 47:101495. Elsevier.
SHVARTZ, E., SAAR, E., MEYERSTEIN, N. & BENOR, D. 1973. A comparison of three methods of acclimatization to dry heat. Journal of applied physiology.
SIMON, H., LINDÉN, J., HOFFMANN, D., BRAUN, P., BRUSE, M. & ESPER, J. 2018. Modeling transpiration and leaf temperature of urban trees – A case study evaluating the microclimate model ENVI-met against measurement data. Landscape and Urban Planning 174:33–40.
SIPLE, P. A. & PASSEL, C. F. 1945. Measurements of Dry Atmospheric Cooling in Subfreezing Temperatures. Proceedings of the American Philosophical Society 89:177–199.
STAIGER, H., LASCHEWSKI, G. & GRÄTZ, A. 2012. The perceived temperature - a versatile index for the assessment of the human thermal environment. Part A: Scientific basics. International Journal of Biometeorology 56:165–176.
STAIGER, H., LASCHEWSKI, G. & MATZARAKIS, A. 2019. Selection of appropriate thermal indices for applications in human biometeorological studies. Atmosphere 10:1–15.
STEADMAN, R. G. 1971. Indices of Windchill of Clothed Persons. Journal of Applied Meteorology 10:674–683.
STEADMAN, R. G. 1979. The assessment of sultriness. Part I. A temperature-humidity index based on human physiology and clothing science.
STEADMAN, R. G. 1979. The assessment of sultriness. Part II: effects of wind, extra radiation and barometric pressure on apparent temperature.
STEADMAN, R. G. 1984. A universal scale of apparent temperature.
STEWART, I. D. & OKE, T. R. 2010. Thermal differentiation of local climate zones using temperature observations from urban and rural areas. 7 AMS - 9th Simposium on the Urban Environment.
STEWART, I. D. & OKE, T. R. 2012. Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society 93:1879–1900.
STOLWIJK, J. A. 1971. A mathematical model of physiological temperature regulation in man. NASA Contractor Report CR-1855:77.
STOLWIJK, J. A. J. & HARDY, J. D. 1966. Temperature regulation in man - A theoretical study. Pflügers Archiv für die Gesamte Physiologie des Menschen und der Tiere 291:129–162.
SULE ZANGO, M., YAIK WAH, L., HOOI CHYEE, D. & DALANDI, A. 2018. Validation of Envi-met Software Using Measured and Predicted Air Temperatures in the Courtyard of Chinese Shophouse Malacca. ©Journal of Applied Sciences & Environmental Sustainability 4:28–36.
TAHA, H., SAILOR, D. & AKBARI, H. 1992. High-Albedo Materials for Reducing Building Cooling Energy Use. California Institute for Energy Efficiency (CIEE).:1–75.
TAN, E., JUSUF, D. S. K., IGNATIUS, D. M. & HIEN, P. W. N. 2015. The application of The Screening Tool for Estate Environment Evaluation (STEVE) SketchUp Plugin as an urban microclimate tool for urban planners:7.
TERJUNG, W. H. 1966. Physiologic climates of the conterminous united states: A bioclimatic classification based on man. Annals of the Association of American Geographers 56:141–179.
THOM, E. C. 1959. The discomfort index (THI). Weatherwise 12:57–61.
THOMAS, G., SHERIN, A. P., ANSAR, S. & ZACHARIAH, E. J. 2014. Analysis of Urban Heat Island in Kochi, India, Using a Modified Local Climate Zone Classification. Procedia Environmental Sciences 21:3–13.
THORSSON, S., HONJO, T., LINDBERG, F., ELIASSON, I. & LIM, E. M. 2007. Thermal comfort and outdoor activity in Japanese urban public places. Environment and Behavior 39:660–684.
THORSSON, S., LINDQVIST, M. & LINDQVIST, S. 2004. Thermal bioclimatic conditions and patterns of behaviour in an urban park in Göteborg, Sweden. International Journal of Biometeorology 48:149–156.
TIAN, H. 2011. VOLUMETRIC HEAT CAPACITY ENHANCEMENT IN ULTRATHIN FLUOROCARBON POLYMERS FOR CAPACITIVE THERMAL MANAGEMENT.
TSOKA, S., TSIKALOUDAKI, A. & THEODOSIOU, T. 2018. Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review. Sustainable Cities and Society 43:55–76. Elsevier.
UNITED NATIONS. DEPARTMENT OF ECONOMIC AND SOCIAL AFFAIRS. POPULATION DIVISION. 2019. World Population Prospects 2019 - Highlights. 1–39.
VAN OOIJEN, A. M. J., VAN MARKEN LICHTENBELT, W. D., VAN STEENHOVEN, A. A. & WESTERTERP, K. R. 2004. Seasonal changes in metabolic and temperature responses to cold air in humans. Physiology and Behavior 82:545–553.
VERNON, H. M. & WARNER, C. G. 1932. The influence of the humidity of the air on capacity for work at high temperatures. Journal of Hygiene 32:431–462.
VIERLINGER, R. 2013. Multi Objective Design Interface:83.
VINET, J. 2000. Contribution à la modélisation thermo-aéraulique du microclimat urbain. Caractérisation de l’impact de l’eau et de la végétation sur les conditions de confort en espaces extérieurs.
VINJE, T. E. 1964. On the radiation balance and micrometeorological conditions at Norway Station, Antartica. Norsk Polarinstitutt SKRIFTER:1–63.
WANG, Z., XING, W., HUANG, Y. & XIE, T. 2016. Studying the urban heat Island using a local climate zone scheme. Polish Journal of Environmental Studies 25:2609–2616.
WATTS, J. D. & KALKSTEIN, L. S. 2004. The development of a warm-weather relative stress index for environmental applications. Journal of Applied Meteorology 43:503–513.
WEBB, C. G. 1960. Thermal discomfort in an equatorial climate - A nomogram for the Equatorial Comfort Index. Journal of the Institution of Heating and Ventilating Engineers 28:297–304.
WEI, R., SONG, D., WONG, N. H. & MARTIN, M. 2016. Impact of Urban Morphology Parameters on Microclimate. Procedia Engineering 169:142–149.
WEIL FLACHAT, O. & BRICHE, E. 2021. Des solutions pour rafraîchir les villes. S’inspirer d’expériences dans le monde selon la variabilité des climats d’aujourd’hui et de demain. (ADEME, Ed.). ADEME. 1–111.
WINSLOW, C. E. A. & HERRINGTON, L. P. 1949. Temperature and Human Life. Princeton University Press.
WINSLOW, C. E. A.-E. A., HERRINGTON, L. P. & GAGGE, A. P. 1937. Physiological Reactions of the Human Body To Various Atmospheric Humidities. American Journal of Physiology-Legacy Content 120:288–299.
WINSLOW, C. E. A., HERRINGTON, L. P. & GAGGE, A. P. 1937. Physiological Reactions of the Human Body To Varying Environmental Temperatures. American Journal of Physiology-Legacy Content 120:1–22.
WINTERLING, G. A. 1979. HUMITURE revised and adapted for the summer season in Jacksonville, Florida. Bulletin of the American Meteorological Society.
XI, T., WANG, Q., QIN, H. & JIN, H. 2020. Influence of outdoor thermal environment on clothing and activity of tourists and local people in a severely cold climate city. Building and Environment 173:106757. Elsevier.
XU, X., WU, Y., WANG, W., HONG, T. & XU, N. 2019. Performance-driven Optimization of Urban Open Space Configuration in the Cold-Winter and Hot-Summer Region of China. Building Simulation 12:411–429.
YAGLOU, C. P. & MINARD, D. 1957. Control of heat casualties at military training centers. A.M.A. archives of industrial health 16:302–316. AMA Arch Ind Health.
YANG, Y., GATTO, E., GAO, Z., BUCCOLIERI, R., MORAKINYO, T. E. & LAN, H. 2019. The “plant evaluation model” for the assessment of the impact of vegetation on outdoor microclimate in the urban environment. Building and Environment 159.
YU, J. T. S. 2006. Wind effects on pedestrians. Pp. 47–83.
YUE, W., LIU, X., ZHOU, Y. & LIU, Y. 2019. Impacts of urban configuration on urban heat island: An empirical study in China mega-cities. Science of the Total Environment 671:1036–1046. Elsevier.
ZABETIAN, E. & KHEYRODDIN, R. 2019. Comparative evaluation of relationship between psychological adaptations in order to reach thermal comfort and sense of place in urban spaces. Urban Climate 29:100483. Elsevier.
ZARE, S., HASHEMINEJAD, N., SHIRVAN, H. E., HEMMATJO, R., SAREBANZADEH, K. & AHMADI, S. 2018. Comparing Universal Thermal Climate Index (UTCI) with selected thermal indices/environmental parameters during 12 months of the year. Weather and Climate Extremes 19:49–57. Elsevier.
ZHANG, H., HUIZENGA, C., ARENS, E. & YU, T. 2001. Considering individual physiological differences in a human thermal model. Journal of Thermal Biology 26:401–408.
ZHANG, L., WEI, D., HOU, Y., DU, J., LIU, Z., ZHANG, G. & SHI, L. 2020. Outdoor thermal comfort of urban park-A case study. Sustainability (Switzerland) 12:1–23.
ZHANG, Y., ZHANG, J., ZHANG, X., ZHOU, D. & GU, Z. 2021. Analyzing the characteristics of UHI (Urban Heat Island) in summer daytime based on observations on 50 sites in 11 LCZ (Local Climate Zone) types in Xi’an, China. Sustainability (Switzerland) 13:1–14.
ZHOU, Y., ZHUANG, Z., YANG, F., YU, Y. & XIE, X. 2017. Urban morphology on heat island and building energy consumption. Procedia Engineering 205:2401–2406.